Algebra I: Goup theory End semestral exam (online)

Time: 2 hours 30 minutes Total score: 50

Notations: Throughout, G shall denote a group. S_n denotes the symmetric group of degree n, D_{2n} denotes the dihedral group of order 2n.

- 1. State true or false. Justify your answers. No marks will be awarded in absence of proper justification.
 - (a) G cannot be isomorphic to a proper quotient of itself.
 - (b) There exists a non-abelian group of order 25.
 - (c) $Z(S_n) = \{1\}$ for all $n \ge 3$.
 - (d) If every subgroup of a group G is normal, then G is abelian.
 - (e) Every infinite group has at least one element of infinite order. (5×2)
- 2. Determine the automorphism group of S_3 . (8)
- 3. State and prove Cauchy's theorem for a finite group G. (8)
- 4. Let G be a group of order 203. Prove that if H is a normal subgroup of order 7 in G then $H \subseteq Z(G)$. Deduce that G is abelian in this case. (8)
- 5. Show that the order of the centralizer $C_{S_n}((12)(34))$ is $(n-4)! \times 8$ for all $n \ge 4$. Determine the elements of the centralizer explicitly. (8)
- 6. Show that a Sylow *p*-subgroup of the dihedral group D_{2n} is cyclic and normal for every odd prime *p*. (8)

******* end *******